K Nearest Neighbors (KNN) > Python Program
K Nearest Neighbors (KNN) > Python Program
Machine Learning
knn.py
from numpy import *
import operator
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1))-dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for
i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(),
key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
output:
================== RESTART:
C:/Users/student/Desktop/knn.py ==================
>>> import knn
>>> group,labels =
knn.createDataSet()
>>> group
array([[ 1. ,
1.1],
[ 1. , 1. ],
[ 0. , 0. ],
[
0. , 0.1]])
>>> labels
['A', 'A', 'B', 'B']
>>> knn.classify0([0,0], group,
labels, 3)
'B'
>>>
Comments
Post a Comment