K Nearest Neighbors (KNN) > Python Program

K Nearest Neighbors (KNN) > Python Program

Machine Learning

knn.py

from numpy import *
import operator
def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group, labels


def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX, (dataSetSize,1))-dataSet
    sqDiffMat = diffMat**2                           
    sqDistances = sqDiffMat.sum(axis=1)          
    distances = sqDistances**0.5                 
    sortedDistIndicies = distances.argsort()
    classCount={}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]  
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1  
    sortedClassCount = sorted(classCount.items(),
    key=operator.itemgetter(1), reverse=True)       
    return sortedClassCount[0][0]

output:
================== RESTART: C:/Users/student/Desktop/knn.py ==================
>>> import knn
>>> group,labels = knn.createDataSet()
>>> group
array([[ 1. ,  1.1],
       [ 1. ,  1. ],
       [ 0. ,  0. ],
       [ 0. ,  0.1]])
>>> labels
['A', 'A', 'B', 'B']
>>> knn.classify0([0,0], group, labels, 3)
'B'

>>> 

Comments

Popular posts from this blog

Intermediate Code Generation > C Program